Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Biosens Bioelectron ; 255: 116267, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38581838

RESUMO

External ventricular drainage is one of the most common neurosurgical procedures in the world for acute hydrocephalus, which must be performed carefully by a neurosurgeon. Although various neuromonitoring external ventricular drain (EVD) catheters have been utilized, they still suffer from rigidity and bulkiness to mitigate post-EVD placement trauma. Here, we introduce a flexible and low-profile smart EVD catheter using a class of technologies with sensitive electrical materials, seamless integration, and flexible mechanics, which serves as a highly soft and minimally invasive device to monitor electrical brain signals. This device reliably captures biopotentials in real time while exhibiting remarkable flexibility and reliability. The seamless integration of its sensory system promises a minimally invasive EVD placement on brain tissue. This work validates the device's distinct characteristics and performances through in vitro experiments and computational analysis. Collectively, this device's exceptional patient- and user-friendly attributes highlight its potential as one of the most practical EVD catheters.


Assuntos
Técnicas Biossensoriais , Humanos , Reprodutibilidade dos Testes , Catéteres , Encéfalo , Drenagem/métodos
2.
Biosens Bioelectron ; 254: 116223, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38518561

RESUMO

Pursuing accurate, swift, and durable pH sensors is important across numerous fields, encompassing healthcare, environmental surveillance, and agriculture. In particular, the emphasis on real-time pH monitoring during cell cultivation has become increasingly pronounced in the current scientific environment-a crucial element being diligently researched to ensure optimal cell production. Both polyaniline (PANi) and iridium oxide (IrOx) show their worth in pH sensing, yet they come with challenges. Single-PANi-layered pH sensors often grapple with diminished sensitivity and lagging responses, while electrodeposited IrOx structures exhibit poor adhesion, leading to their separation from metallic substrates-a trait undesirable for a consistently stable, long-term pH sensor. This paper introduces a bi-layered PANi-IrOx pH sensor, strategically leveraging the advantages of both materials. The results presented here underscore the sensitivity enhancement of binary-phased framework, faster response time, and more robust structure than prior work. Through this synergistic strategy, we demonstrate the potential of integrating different phases to overcome the inherent constraints of individual materials, setting the stage for advanced pH-sensing solutions.


Assuntos
Técnicas Biossensoriais , Técnicas Biossensoriais/métodos , Técnicas de Cultura de Células , Compostos de Anilina/química , Concentração de Íons de Hidrogênio
3.
Mov Disord ; 39(4): 738-745, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38310362

RESUMO

BACKGROUND: Blepharospasm is treated with botulinum toxin, but obtaining satisfactory results is sometimes challenging. OBJECTIVE: The aim is to conduct an exploratory trial of oral dipraglurant for blepharospasm. METHODS: This study was an exploratory, phase 2a, randomized, double-blind, placebo-controlled trial of 15 participants who were assigned to receive a placebo or dipraglurant (50 or 100 mg) and assessed over 2 days, 1 and 2 hours following dosing. Outcome measures included multiple scales rated by clinicians or participants, digital video, and a wearable sensor. RESULTS: Dipraglurant was well tolerated, with no obvious impact on any of the measurement outcomes. Power analyses suggested fewer subjects would be required for studies using a within-subject versus independent group design, especially for certain measures. Some outcome measures appeared more suitable than others. CONCLUSION: Although dipraglurant appeared well tolerated, it did not produce a trend for clinical benefit. The results provide valuable information for planning further trials in blepharospasm. © 2024 International Parkinson and Movement Disorder Society.


Assuntos
Blefarospasmo , Humanos , Blefarospasmo/tratamento farmacológico , Método Duplo-Cego , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Resultado do Tratamento
4.
Sci Adv ; 10(7): eadk6714, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38354246

RESUMO

Achieving large-scale, cost-effective, and reproducible manufacturing of stem cells with the existing devices is challenging. Traditional single-use cell-bag bioreactors, limited by their rigid and single-point sensors, struggle with accuracy and scalability for high-quality cell manufacturing. Here, we introduce a smart bioreactor system that enables multi-spatial sensing for real-time, wireless culture monitoring. This scalable system includes a low-profile, label-free thin-film sensor array and electronics integrated with a flexible cell bag, allowing for simultaneous assessment of culture properties such as pH, dissolved oxygen, glucose, and temperature, to receive real-time feedback for up to 30 days. The experimental results show the accurate monitoring of time-dynamic and spatial variations of stem cells and myoblast cells with adjustable carriers from a plastic dish to a 2-liter cell bag. These advances open up the broad applicability of the smart sensing system for large-scale, lower-cost, reproducible, and high-quality engineered cell manufacturing for broad clinical use.


Assuntos
Eletrônica , Dispositivos Eletrônicos Vestíveis , Técnicas de Cultura de Células , Reatores Biológicos , Células-Tronco
5.
Adv Sci (Weinh) ; 11(7): e2305871, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38087936

RESUMO

Augmented reality (AR) is a computer graphics technique that creates a seamless interface between the real and virtual worlds. AR usage rapidly spreads across diverse areas, such as healthcare, education, and entertainment. Despite its immense potential, AR interface controls rely on an external joystick, a smartphone, or a fixed camera system susceptible to lighting. Here, an AR-integrated soft wearable electronic system that detects the gestures of a subject for more intuitive, accurate, and direct control of external systems is introduced. Specifically, a soft, all-in-one wearable device includes a scalable electrode array and integrated wireless system to measure electromyograms for real-time continuous recognition of hand gestures. An advanced machine learning algorithm embedded in the system enables the classification of ten different classes with an accuracy of 96.08%. Compared to the conventional rigid wearables, the multi-channel soft wearable system offers an enhanced signal-to-noise ratio and consistency over multiple uses due to skin conformality. The demonstration of the AR-integrated soft wearable system for drone control captures the potential of the platform technology to offer numerous human-machine interface opportunities for users to interact remotely with external hardware and software.


Assuntos
Realidade Aumentada , Dispositivos Eletrônicos Vestíveis , Humanos , Pele , Eletrônica , Eletrodos
6.
Sci Adv ; 9(21): eadg9671, 2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-37224243

RESUMO

Although many people suffer from sleep disorders, most are undiagnosed, leading to impairments in health. The existing polysomnography method is not easily accessible; it's costly, burdensome to patients, and requires specialized facilities and personnel. Here, we report an at-home portable system that includes wireless sleep sensors and wearable electronics with embedded machine learning. We also show its application for assessing sleep quality and detecting sleep apnea with multiple patients. Unlike the conventional system using numerous bulky sensors, the soft, all-integrated wearable platform offers natural sleep wherever the user prefers. In a clinical study, the face-mounted patches that detect brain, eye, and muscle signals show comparable performance with polysomnography. When comparing healthy controls to sleep apnea patients, the wearable system can detect obstructive sleep apnea with an accuracy of 88.5%. Furthermore, deep learning offers automated sleep scoring, demonstrating portability, and point-of-care usability. At-home wearable electronics could ensure a promising future supporting portable sleep monitoring and home healthcare.


Assuntos
Síndromes da Apneia do Sono , Qualidade do Sono , Humanos , Polissonografia , Sono , Síndromes da Apneia do Sono/diagnóstico , Encéfalo
7.
Front Neuroinform ; 15: 750839, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34744677

RESUMO

There remains an active investigation on elevating the classification accuracy and information transfer rate of brain-computer interfaces based on steady-state visual evoked potential. However, it has often been ignored that the performance of steady-state visual evoked potential (SSVEP)-based brain-computer interfaces (BCIs) can be affected through the minor displacement of the electrodes from their optimal locations in practical applications because of the mislocation of electrodes and/or concurrent use of electroencephalography (EEG) devices with external devices, such as virtual reality headsets. In this study, we evaluated the performance robustness of SSVEP-based BCIs with respect to the changes in electrode locations for various channel configurations and classification algorithms. Our experiments involved 21 participants, where EEG signals were recorded from the scalp electrodes densely attached to the occipital area of the participants. The classification accuracies for all the possible cases of electrode location shifts for various channel configurations (1-3 channels) were calculated using five training-free SSVEP classification algorithms, i.e., the canonical correlation analysis (CCA), extended CCA, filter bank CCA, multivariate synchronization index (MSI), and extended MSI (EMSI). Then, the performances of the BCIs were evaluated using two measures, i.e., the average classification accuracy (ACA) across the electrode shifts and robustness to the electrode shift (RES). Our results showed that the ACA increased with an increase in the number of channels regardless of the algorithm. However, the RES was enhanced with an increase in the number of channels only when MSI and EMSI were employed. While both ACA and RES values for the five algorithms were similar under the single-channel condition, both ACA and RES values for MSI and EMSI were higher than those of the other algorithms under the multichannel (i.e., two or three electrodes) conditions. In addition, EMSI outperformed MSI when comparing the ACA and RES values under the multichannel conditions. In conclusion, our results suggested that the use of multichannel configuration and employment of EMSI could make the performance of SSVEP-based BCIs more robust to the electrode shift from the optimal locations.

8.
Sensors (Basel) ; 19(16)2019 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-31395802

RESUMO

Internet gaming disorder in adolescents and young adults has become an increasing public concern because of its high prevalence rate and potential risk of alteration of brain functions and organizations. Cue exposure therapy is designed for reducing or maintaining craving, a core factor of relapse of addiction, and is extensively employed in addiction treatment. In a previous study, we proposed a machine-learning-based method to detect craving for gaming using multimodal physiological signals including photoplethysmogram, galvanic skin response, and electrooculogram. Our previous study demonstrated that a craving for gaming could be detected with a fairly high accuracy; however, as the feature vectors for the machine-learning-based detection of the craving of a user were selected based on the physiological data of the user that were recorded on the same day, the effectiveness of the reuse of the machine learning model constructed during the previous experiments, without any further calibration sessions, was still questionable. This "high test-retest reliability" characteristic is of importance for the practical use of the craving detection system because the system needs to be repeatedly applied to the treatment processes as a tool to monitor the efficacy of the treatment. We presented short video clips of three addictive games to nine participants, during which various physiological signals were recorded. This experiment was repeated with different video clips on three different days. Initially, we investigated the test-retest reliability of 14 features used in a craving detection system by computing the intraclass correlation coefficient. Then, we classified whether each participant experienced a craving for gaming in the third experiment using various classifiers-the support vector machine, k-nearest neighbors (kNN), centroid displacement-based kNN, linear discriminant analysis, and random forest-trained with the physiological signals recorded during the first or second experiment. Consequently, the craving/non-craving states in the third experiment were classified with an accuracy that was comparable to that achieved using the data of the same day; thus, demonstrating a high test-retest reliability and the practicality of our craving detection method. In addition, the classification performance was further enhanced by using both datasets of the first and second experiments to train the classifiers, suggesting that an individually customized game craving detection system with high accuracy can be implemented by accumulating datasets recorded on different days under different experimental conditions.


Assuntos
Comportamento Aditivo/fisiopatologia , Fissura/fisiologia , Aprendizado de Máquina , Eletroculografia , Frequência Cardíaca/fisiologia , Humanos , Masculino , Taxa Respiratória/fisiologia , Movimentos Sacádicos/fisiologia , Autorrelato , Jogos de Vídeo , Adulto Jovem
9.
Sensors (Basel) ; 18(1)2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29301261

RESUMO

The increase in the number of adolescents with internet gaming disorder (IGD), a type of behavioral addiction is becoming an issue of public concern. Teaching adolescents to suppress their craving for gaming in daily life situations is one of the core strategies for treating IGD. Recent studies have demonstrated that computer-aided treatment methods, such as neurofeedback therapy, are effective in relieving the symptoms of a variety of addictions. When a computer-aided treatment strategy is applied to the treatment of IGD, detecting whether an individual is currently experiencing a craving for gaming is important. We aroused a craving for gaming in 57 adolescents with mild to severe IGD using numerous short video clips showing gameplay videos of three addictive games. At the same time, a variety of biosignals were recorded including photoplethysmogram, galvanic skin response, and electrooculogram measurements. After observing the changes in these biosignals during the craving state, we classified each individual participant's craving/non-craving states using a support vector machine. When video clips edited to arouse a craving for gaming were played, significant decreases in the standard deviation of the heart rate, the number of eye blinks, and saccadic eye movements were observed, along with a significant increase in the mean respiratory rate. Based on these results, we were able to classify whether an individual participant felt a craving for gaming with an average accuracy of 87.04%. This is the first study that has attempted to detect a craving for gaming in an individual with IGD using multimodal biosignal measurements. Moreover, this is the first that showed that an electrooculogram could provide useful biosignal markers for detecting a craving for gaming.


Assuntos
Fissura , Adolescente , Comportamento do Adolescente , Comportamento Aditivo , Humanos , Internet , Jogos de Vídeo
10.
Sensors (Basel) ; 16(9)2016 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-27649182

RESUMO

Respiratory rate (RR) is a useful vital sign that can not only provide auxiliary information on physiological changes within the human body, but also indicate early symptoms of various diseases. Recently, methods for the estimation of RR from photoplethysmography (PPG) have attracted increased interest, because PPG can be readily recorded using wearable sensors such as smart watches and smart bands. In the present study, we propose a new method for the fast and robust real-time estimation of RR using an adaptive infinite impulse response (IIR) notch filter, which has not yet been applied to the PPG-based estimation of RR. In our offline simulation study, the performance of the proposed method was compared to that of recently developed RR estimation methods called an adaptive lattice-type RR estimator and a Smart Fusion. The results of the simulation study show that the proposed method could not only estimate RR more quickly and more accurately than the conventional methods, but also is most suitable for online RR monitoring systems, as it does not use any overlapping moving windows that require increased computational costs. In order to demonstrate the practical applicability of the proposed method, an online RR estimation system was implemented.


Assuntos
Sistemas Computacionais , Fotopletismografia/métodos , Taxa Respiratória/fisiologia , Algoritmos , Humanos , Internet , Análise de Componente Principal , Processamento de Sinais Assistido por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA